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ABSTRACT

The transverse resonance method is used
for deriving dispersion characteristics
of fundamental and higher order modes in
finline with arbitrary slot widthe and
locations with regard to the finite thi-
ckness of metallization. In addition %o
the propagation constant, the characte-
ristic impedance is calculated on the
basis of the power-voltage definition.

INTRODUCTION

Finline structuresg have found freguent
applications in millimeter-wave components.
The problem of finline propagation chara-
cteristics has been treated by many exact
and approximate methods. The most general,
rigorous and systematic one is the mode
matching technigue, which has been used by
Vahldieck (1) to show the influence of me-
tallization thickness and mounting grooves
on these characteristics. The analysis of
finlines with finite mettalization thick-
ness utilizing the network analytical me-
thod for electromagnetic fields has been
presented in (2). The spectral domain te-
chnique for an idealigzed finline structu-
res {(zero metallization thickness and ab-
sence of mounting grooves) has been des-
crived, e.g., in (3)-(5). The idealized
structure of this transmission line has
also been analyzed in terms of the singu-
lar integral equation technique (6).

A1l the four rigorous methods are based on
the hybrid mode formulation and they are
complicated, computer time consuming and
cumbersome. On the other hand, the need for
the design of finline circuits in a lucid
and tractable manner has caused the deve-
lopment of closed-form design equations
like, e.g., in (7),(8). However, the de-
sign equations are appropriated for the
idealized finline structure and accurate
enough only for a definite range of its pa-
rameters. Similar disadvantades can be
found in the snalysis reported in (9) and
based on the transverse resonance method
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(TRM) which was previously used for slot-
line by Cohn (10?.

Until recently there have been no efficient
analysis of finline with finite metalliza-
tion thickness, and less complicated than
the above mentioned rigorous mathods. The
purpose of this paper is to present such a
formulation of TRM, which should partly
fill in this gap. The proposed method used
for the lossless unilateral finline shown
in Fig.1 will be presented here as an exam-
ple illustrating the problem, Slot and die=-
lectric layers are arbitrarily located in
waveguide housing,

BASIS OF SOLUTION

The dispersion characteristics of modes in
finline can be obtained by solving the
boundary value problem of the half -~ wave-
length finline resonator. Hence, the length
of resonator in the x direction (Fig.1),
equal toT/A (5 -phase constant for funda-
mental or highe$ order mode in finline), is
an unknown function of the resonant fre-
quency f. The analysis is limited to such
modesg. in finline which are excited (in the
x direction) by an incident TE,,-wave of
the empty waveguide.
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Big.1: Unilateral finline.
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The electromagnetic fields in the four re-
gions shown in Fig.1 are superpositions of
waveguide modes "propagated" in the z di-

rection, which have T variation in the x

direction when the half-wavelength resona-
tor is considered. Therefore, the full set
of modes satisfying the boundary conditions

is as follows: TE, (to z axis) for n an

integer n=0 and TM1n for n>1. The coupling

of TE- and TM-modes is automatically in-
volved by assumption that only the y compo-
nent of the E-field exists in the slot at
z=0 (T.plane). Additionally, the analysis
is simBlified by assuming that only TE, -
mode is present in the region (2). The 8m-
plitude of each mode in each region must

be such, that when the full set of modes

ig superimposed, the boundary and conbinu-
ity conditions in the planes: T, and TO

will be met, and all fields components in
plane T3 will be matched. That is an equi-

valent condition that transverse resonance
will occur in the circuit presented in
Fig.2. The boundary value problem has been
expressed by the following real equation:

B_t=B++B_=O (1)

where Bt is the total susceptance in the
plane TO, and B+, B_ are susceptances in

this plane looking in the +z and -z dire-
ctions, respectively.
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Fig.2: Equivalent circuit for transverse
section of half-wavelength unilate-
ral finline resonator.

The B‘C

given set of parameters:sr, a, b, ¢, 4, e,

t, 1,4 and 12 which are indicated in Fig.1.

is a funection of f and ﬂk for the

The roots of eguation (1), at a certain
frequency, are phase constants of the fun-
damental and higher order modes in finline,
It is self-evident that the above equation
has no solution vhen f3 =83, (ﬁ%—free space

phase constant). However, since propagation

characteristics in finline are monotonic,
their values, at the discontinuity points
of equatiion (1), can be calculated with
ordered accuracy.

FORMULAS FOR ELEMENTS OF THE RESONATOR
EQUIVALENT CIRCUIT

Components B+ and B of the resonance egua-
tion are easily derived by using the con-
ventional circuit theory, and the elements
of the circuit in Fig.2 are analytically
determined below. This circuit consists of
the segments of TE1O—mode air- or diele-
ctric~filled waveguide, which are described
by propagation constants gfé);=1,2,3,4 and
characteristic admittances Yfé based on the
power-voltage definition. These parameters
are defined as follows:
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The susceptance Ba represents all higher
order modes (TE1n’ TM1n for n=1) in the T,

plane from region (1). These modes in re-
gions (3) and (4) are equalized in the pla-
ne TO by the susceptance Bd‘ Both equiva-

lent susceptances have been derived by
using a properly modified variational tech-
nique, which has been applied previously by
Collin (11) for the capacitive aperture in
waveguide.

According to the earlier assumptions, there
is only the y component of the E-field in
the plane T,, The electromagnetic field in
region (1) “is TE to x axis and can be con-
structed as the superposition of TEx, modes,
Fig.3 showg the network representation of
these hybrid modes for n>1.
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Fig.3: EBquivalent network for higher order
waveguide modes in region (1).



Their characteristic admittances
the power-voltage
lows:

R
Tan= Y10 %10

and the mode propagation constants are ex-

pressed as
2 2
- n-‘ -
(iy)

based on
definition are as fol-

a;
n

2
N _ 2 .
(Xan) = Yo " {x
The E-field in the slot at plane T, is con-

stant along the y axis, therefore® susce-
ptance Ba is described by the equation:

)
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where Ay= s1n(§»b>-31n[§~\1 - 241l »
and Ban is the input susceptance of the
TEx,, -mode as in Fig.3. Coefficients L
can be obtained from the tables of
Chebyshev polynomials.

The formula for Bd is ag follows:
X(%

S 1 +3) %10 2
B.= B+ 2:, B, = .Y 21X .p (3)
d aG =1 dn n “10 Xy no

(S)X(B)

. _ 10
with By.= Y1O-—Y;M(—lndé) .
Susceptance Bdn involves the coupling be-

tween TE1n(to z) and TM
regions (3) and (4)
follows:

By,= [(n-x’y) 2.B§£;I + X}Q{-Bgﬂ/ﬂn-xy) 2 4 X;ﬂ

™ TE .
Bdn dn 2re input susceptances

at TO as in Fig.4 for TM1n and TE1n

respectively. Propagation constants

1n(’co z) waves in

and is determined as

where
modes,

and
characteristic admittances of the transmis-
sion lines in Fig.4 are egual:

(1) - oo -k (o) s e il
(YfzﬁmM = Y;gzsr'X§//ZxﬁgXY{26 H

(Y&)FM _ Y%)_ Xg (xfé)- Xff?) ;

(Y&))TE = 15 ¥ / ¥io with 1=3,4 .
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Fig.4: Network representation for higher
order modes in regions (3) and (4).

The above formulas allow us to construct
the resonance condition (1).

The characteristic impedance of finline on
the hasis of power-voltage definition can

be calculated by using the procedure given
in (10).

NUMERICAL RESULTS

The bisection method has been used to solve

equation (1). The first twelve terms of
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Fig.5: Characteristics of unilateral fin-
line (fundamental mode).



the series in eguations (2) and (3) have
been taken into account.

Fig.5 shows frequency dependence of the ef-
fect of the metallization thickness on the
effective dielectric constant Eqfpr and on

the characteristic impedance ZO in a uni-
lateral finline. The published data (2) are
also plotted in Fig.5 and close agreement
between the two sets of results is seen for
effective dielectric constant. The results
for %, (for t=0) presented in Fig.5 show
good ~agreement. Comparing the characteri-~
stic impedance for the case of finite meta-
llization thickness %to results published in
(2) yields deviations of less than 3 per
cent for t=35um and less than 6 per cent
for t=100um.

The comparison of the numerical results ob-
tained by this method (TRM) and by the sin-
ular integral equation technique (SIET)
%12l for propagation constants of fundamen-
tal and higher order modes in unilateral
finline with gero metallization thickness,
is vpresented in Table 1. The agreement is
very good.

Table 1 - The propagation constants (ﬂx)
of the first three modes in
a unilateral finline.
parameters: 58=3.75 , a=1,65mn,
c=0,

b=0,825mm, 11mm, d=0.%mn,
l1=O.77mm, e=t=0 .
£ [GHz] mode e [rad, /mm]|
no. SIET TRM
60 1 0.17908 0.17894
120 1 2.85901 2.8591%
1 4,79879 4.72910
180
2 0.63598 0.63%617
1 6.45114 6.45071
230 2 %.12472 3,12480
3 2.05269 2.05570
1 7.13004 7.12945
250 2 3,76650 %,76664
3 2.97324 2.97567
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