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ABSTRACT (TI?JY) whj.ch was

7

reviousl.y useci for slot-

line by Cohn (10 .

The transverse resonance method is used I
for deriving dispersion characteristics :

of fundamen~al kd higher order modes in
finline }!ith arbitrary slot widths and
locations with regard to the finite thi-
ckness of meta.llization. In addition to
the propagation constant, the characte-
ristic impedance is calculated on the
basis of the power-voltage definition.

INTRODUCTION

Until recently there have been no efficient
analysis of finline with finite metalliza-
tion thickness, and less complicated than
the above mentioned rigorous mathods. The
purpose of this paper is to present such a
formulation of TRM, which should partly
fill in this gap. The proposed method used

for the lossless unilateral finline shown
in Fig.1 will be presented here as an exam-
ple illustrating the problem. Slot and die-
lectric layers are arbitrarily located in
waveguide housing.

Finline structures have found frequent
applications in millimeter-wave components.
The problem of finline propagation chara-

cteristics has bee~ treated by many exact
and approximate methods. The most general,
rigorous and systematic One is -the mode

matching technique , I,fhich has been used by

Vahldieck (1) to show the influence of me-

tallization thickness and mounting grooves
on these characteristics. The analysis of

finlines with finite mettalization thick-
ness utilizing the netvork analytical me-

thod. for electromagnetic fields has been
~~resented in (2). The spectral domain te-

chni ue for an idealize~ finline
?

structu-
res zero metallization thickness and ab-
sence of mounting grooves) has been des-

cribed, e.g., in (3)-(5). The ideali;::
structure of this transmission line
also been analyzed in terms of the singu-
lar j.ntegral equation technique (6).

All the four rigorous methods are based on
the hybrid mode formulation and they are
complicated, computer time consuming and
cumbersome. On the other hand, the need for

the design of finl.ine circuits in a lucid
and tractable manner has caused the deve-
lopment of closed-form design equations
like, e.g.) in (7),(8). However, the de-
sign equations are appropriated for the
idealized finline structure and accurate
enough only for a definite range of its pa-
rameters. Similar disadvantades can be
found in the analysis reported in (9) and
based on the transverse resonance method

BASIS OF SOIJJTIOIV

The dispersion characteristics of modes in
finline can be obtained by solving the
boundary value problem of the half - wave-
length finlineresonator. Hence, the length
of reson?.tor in the x direction (Fig.1),
equal to7T/fl (PI -phase constant for funda-
mental or h?ghe~ order mode in finline), is
an unknown function of the resonant fre-
quency f. The analysis is limited to such
modes in finline which are excited (in the
x direction) by an incident TE1o-wave of
the empty waveguide.

<

Fig.1: Unilateral finline.
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The electromagnetic fields in the four re-

gions shown in Fig.1 are superpositions of
waveguide modes “propagated” in the Z. di-
rection, which have lT variation in the x
direction when the half-wavelength resona-
tor is considered. !l!herefore, the full set
of modes satisfying the boundary conditions
is as follows: TE1n (to z axis) for n an

integer n20 and TMgn for n>l. The coupling

of TE- and TM-modes is automatically in-
volved by assumption that only the y CornPO-
nent of the E-field exists in the slot at
z=O (T plane).

9

Additionally, the mdysis
is sim lified by assuming that only TE1 -
mode is present in the region (2). The 8n-
plitude of each mode in each region must
be such, that when the full set of modes
is superimposed, the boundary and continu-
ity conditions in the planes: T2 and To

will be met, and all fields components in
plane T3 will be matched. That is an equi-

valent condition that transverse resonance
will occur in the circuit presented in
Fig.2. The boundary value problem has been
expressed by the following real equation:

Bt=B++B =0 (1)

where Bt is the total susceptance in the

B are susceptances inplane TO, and B+, -

this plane looking in the +Z and -z dire-
ctions, respectively.

,
I I 4I (1) I (2) ! (3) ! (4) i z
I ,

~ t2 P T3 T4

‘&jB_
je+=

Fig.2: Equivalent circuit for transverse

section of half-wavelength unilate-
ral finline resonator.

The Bt is a function of f and & for the

given-set of parameters:%, a, b, C, d, e~

t, 1, and 12 which are indicated in Fig.1.

The roots o; equation (l), at a certain
frequency, are phase constants of the fun-
damental and higher order modes in finline.
It is self-evident that the above equation
has no solution when px=po (pO-free space

phase constant). However, since p“ropaga%ion

characteristics in finline are monotonic,
their values, at the discontinuity points
of equation (1), can be calculated with
ordered accuracy.

FORMULAS FOR ELEMENTS OF THE RESONATOR

EQUIVALENT CIRCUIT

Components B+ and B of the resonance eoua-
tion are easily der~ved by using the con-
ventional circuit theory, and the elements
of the circuit in l?ig.2 are analytically
determined below. This circuit consists of

the segments of TE1o-mode air- or diele-

ctric-filled wavegu.ide, which are described

by p~opagation constants y~)(;;l,2,3,4 and

characteristic admittances ‘lo based ‘n ‘he
power-voltage definition. These parameters
are defined as follows:

region (3)

otherwise

region (2)

otherwise

The susceptance B represents all higher
order modes (TEqnS TM1n for n>l) in the T2

plane from region (l). Tlnese modes in re-
gions (3) and (4) are eaualized j-n the pla-
ne To by the susceptance Bd. Both equiva-

lent susceptsnces have been derived by
using a pro~erly modified variational tech-
nique, which has been applied previously by
Collin (11) for the capacitive aperture in
waveguide.

According to tlk earlier assumptions, there
is only the y component of the E-field in
the plane T2. The electromagnetic field in
region (1) is TE to x axis and can be con-
structed as %he superposition of TEx ,nmodes.
Fig.3 shows the network representation of
these hybrid modes for n>l.

Fig.3:

i &

~ 12

Equivalent network
kworeguide modes in

for higher order
region (l).
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!l!heir characteristic admittances based on
the power-voltage definition exe as fol-
lows :

ya= y~l)
/

(1) (1)lo-Yqo Jqn
and the mode propagation constants are ex-
Fressed as

The E-field in the slot at plane T2 is con-

stant along the y axis, therefore susce-
ptance Ba is described by the equation:

and B= is the input susceptance of the

‘&In
-mode as in Fig.3. Coefficients F’no

can be obtained from the tables of
Chebyshev polynomials.

The formula for Bd is as follows:

‘fBdG+2=Fd~+yJ~)#p’o‘3)
with BdG= y(3)~/~),o.-#-ln~2) .

Y
Susceptance Bdn involves the coupling be-

‘Ween ‘Eln
(to z) and TM,n(to z) waves in

regions (3) and (4) and is determined as

follows:

B
[[ )

2, B!CM
dn= ‘“~y dn + ,: E@/[n’Yy)2 +~q

‘TM
where

TE ;
dn and Bdn are Input susceptances

at TO as in Fig.~--for TMln and !CEln modes,

respectively. Propagation constants and

characteristic admittances of the transmis-

sion lines in Fig.4 are equal:

M I

t

l?ig.4: Network representation for higher
order modes in regions (3) and (4).

The above formulas allow us to construct
the resonance condition (l).

The characteristic impedance of firiline on
the basis of power--voltage definition can
be calculated by using the procedure given
in (10).

NUNERICAL .RESULTS

The bisection method has been used to solve

equation (l). The first twelve terms of
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Fig.5: Characteristics of unilateral fin-
line (fundamental mode).
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the series in equations (2) and (3) have
been taken into account.

l?ig.5 shows frequency dependence of the ef-

fect of the metallization thickness on the
effective dielectric constant ceff! and on

the characteristic impedance 20 in a uni-
lateral finline. !lhe published data (2) are
also plotted in 3’ig.5 end close agreement
between the two sets of results is seen for
effective dielectric constant. The results
for ZO (for t=O)presenAed in Fig.5 show

good agreement. Comparing the characteri-
stic impedance for the case of finite meta-
llization thickness to results published in
(2) yields deviations of less than 3 per
cent for t=35pm and less than 6 per cent
for t=100pm.

The comparison of the numerical results ob-
tained by this method (TRY) and by the sin-

‘?12), for propagation constants of fundsmen-

ular integral eouation technique (SIET)

tal and higher order modes in unilateral
finline with zero metallization thickness,
is presented in Table 1. The agreement is
very good.

Table 1 - The propagation constants (fix)

of the first three modes in
a unilateral finline.
parameters:

%
=3.75 , a=l.65mm,

b=O.P25mm, C= .Ilmm, d=O.3mm,
lq=0.77mn, e=t=O .

f [GHz]
mode f3x [rad/m@

no.
SIET

!
TRIY

r
I 60 / 1 I 0.17908 I 0.178941

120 1 2.t359111 2.t?5913

1 4.79P79 4.79910

180
2 0.63598 0.63617

1 6.~5114 6.45071

230 2 “5.12472 3.12480

3 2.05299 2.0557fi

1 7.130n4 7.12945

25o 2 3.76650 3.?6664

3 2.97724 2.97567
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